Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int \left(3y-y^{2}+9-3y\right)\times 23\mathrm{d}y
Apply the distributive property by multiplying each term of y+3 by each term of 3-y.
\int \left(-y^{2}+9\right)\times 23\mathrm{d}y
Combine 3y and -3y to get 0.
\int -23y^{2}+207\mathrm{d}y
Use the distributive property to multiply -y^{2}+9 by 23.
\int -23y^{2}\mathrm{d}y+\int 207\mathrm{d}y
Integrate the sum term by term.
-23\int y^{2}\mathrm{d}y+\int 207\mathrm{d}y
Factor out the constant in each of the terms.
-\frac{23y^{3}}{3}+\int 207\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -23 times \frac{y^{3}}{3}.
-\frac{23y^{3}}{3}+207y
Find the integral of 207 using the table of common integrals rule \int a\mathrm{d}y=ay.
-\frac{23y^{3}}{3}+207y+С
If F\left(y\right) is an antiderivative of f\left(y\right), then the set of all antiderivatives of f\left(y\right) is given by F\left(y\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.