Evaluate
-\frac{23y^{3}}{30}+\frac{207y}{10}+С
Differentiate w.r.t. y
\frac{207-23y^{2}}{10}
Share
Copied to clipboard
\int \left(3y-y^{2}+9-3y\right)\times 2.3\mathrm{d}y
Apply the distributive property by multiplying each term of y+3 by each term of 3-y.
\int \left(-y^{2}+9\right)\times 2.3\mathrm{d}y
Combine 3y and -3y to get 0.
\int -2.3y^{2}+20.7\mathrm{d}y
Use the distributive property to multiply -y^{2}+9 by 2.3.
\int -\frac{23y^{2}}{10}\mathrm{d}y+\int 20.7\mathrm{d}y
Integrate the sum term by term.
-\frac{23\int y^{2}\mathrm{d}y}{10}+\int 20.7\mathrm{d}y
Factor out the constant in each of the terms.
-\frac{23y^{3}}{30}+\int 20.7\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -2.3 times \frac{y^{3}}{3}.
-\frac{23y^{3}}{30}+\frac{207y}{10}
Find the integral of 20.7 using the table of common integrals rule \int a\mathrm{d}y=ay.
-\frac{23y^{3}}{30}+\frac{207y}{10}+С
If F\left(y\right) is an antiderivative of f\left(y\right), then the set of all antiderivatives of f\left(y\right) is given by F\left(y\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}