Evaluate
\frac{x^{3}}{3}-2x^{2}+С
Differentiate w.r.t. x
x\left(x-4\right)
Share
Copied to clipboard
\int x^{2}-\left(2\sqrt{x}\right)^{2}\mathrm{d}x
Consider \left(x+2\sqrt{x}\right)\left(x-2\sqrt{x}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\int x^{2}-2^{2}\left(\sqrt{x}\right)^{2}\mathrm{d}x
Expand \left(2\sqrt{x}\right)^{2}.
\int x^{2}-4\left(\sqrt{x}\right)^{2}\mathrm{d}x
Calculate 2 to the power of 2 and get 4.
\int x^{2}-4x\mathrm{d}x
Calculate \sqrt{x} to the power of 2 and get x.
\int x^{2}\mathrm{d}x+\int -4x\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-4\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-2x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}-2x^{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}