Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 4x^{2}\mathrm{d}x+\int -2\sqrt[3]{x}\mathrm{d}x+\int \frac{8}{x^{3}}\mathrm{d}x
Integrate the sum term by term.
4\int x^{2}\mathrm{d}x-2\int \sqrt[3]{x}\mathrm{d}x+8\int \frac{1}{x^{3}}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{4x^{3}}{3}-2\int \sqrt[3]{x}\mathrm{d}x+8\int \frac{1}{x^{3}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 4 times \frac{x^{3}}{3}.
\frac{4x^{3}}{3}-\frac{3x^{\frac{4}{3}}}{2}+8\int \frac{1}{x^{3}}\mathrm{d}x
Rewrite \sqrt[3]{x} as x^{\frac{1}{3}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{3}}\mathrm{d}x with \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Simplify. Multiply -2 times \frac{3x^{\frac{4}{3}}}{4}.
\frac{4x^{3}}{3}-\frac{3x^{\frac{4}{3}}}{2}-\frac{4}{x^{2}}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{3}}\mathrm{d}x with -\frac{1}{2x^{2}}. Multiply 8 times -\frac{1}{2x^{2}}.
\frac{4x^{3}}{3}-\frac{3x^{\frac{4}{3}}}{2}-\frac{4}{x^{2}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.