Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(6x^{2}+4x+2\right)x\mathrm{d}x
Use the distributive property to multiply 3x^{2}+2x+1 by 2.
\int 6x^{3}+4x^{2}+2x\mathrm{d}x
Use the distributive property to multiply 6x^{2}+4x+2 by x.
\int 6x^{3}\mathrm{d}x+\int 4x^{2}\mathrm{d}x+\int 2x\mathrm{d}x
Integrate the sum term by term.
6\int x^{3}\mathrm{d}x+4\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{3x^{4}}{2}+4\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 6 times \frac{x^{4}}{4}.
\frac{3x^{4}}{2}+\frac{4x^{3}}{3}+2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 4 times \frac{x^{3}}{3}.
\frac{3x^{4}}{2}+\frac{4x^{3}}{3}+x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
\frac{3x^{4}}{2}+\frac{4x^{3}}{3}+x^{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.