Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 10x^{2}+8x-15x-12\mathrm{d}x
Apply the distributive property by multiplying each term of 2x-3 by each term of 5x+4.
\int 10x^{2}-7x-12\mathrm{d}x
Combine 8x and -15x to get -7x.
\int 10x^{2}\mathrm{d}x+\int -7x\mathrm{d}x+\int -12\mathrm{d}x
Integrate the sum term by term.
10\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int -12\mathrm{d}x
Factor out the constant in each of the terms.
\frac{10x^{3}}{3}-7\int x\mathrm{d}x+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 10 times \frac{x^{3}}{3}.
\frac{10x^{3}}{3}-\frac{7x^{2}}{2}+\int -12\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -7 times \frac{x^{2}}{2}.
\frac{10x^{3}}{3}-\frac{7x^{2}}{2}-12x
Find the integral of -12 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{10x^{3}}{3}-\frac{7x^{2}}{2}-12x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.