Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{3}\mathrm{d}x+\int -3x^{\frac{5}{2}}\mathrm{d}x+\int \frac{4}{x}\mathrm{d}x
Integrate the sum term by term.
2\int x^{3}\mathrm{d}x-3\int x^{\frac{5}{2}}\mathrm{d}x+4\int \frac{1}{x}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{2}-3\int x^{\frac{5}{2}}\mathrm{d}x+4\int \frac{1}{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 2 times \frac{x^{4}}{4}.
\frac{x^{4}}{2}-\frac{6x^{\frac{7}{2}}}{7}+4\int \frac{1}{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{5}{2}}\mathrm{d}x with \frac{2x^{\frac{7}{2}}}{7}. Multiply -3 times \frac{2x^{\frac{7}{2}}}{7}.
\frac{x^{4}}{2}-\frac{6x^{\frac{7}{2}}}{7}+4\ln(|x|)
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
\frac{x^{4}}{2}-\frac{6x^{\frac{7}{2}}}{7}+4\ln(x)+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.