Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 10x^{5}\mathrm{d}x+\int -x^{3}\mathrm{d}x+\int -14x^{2}\mathrm{d}x+\int -\frac{x}{2}\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
10\int x^{5}\mathrm{d}x-\int x^{3}\mathrm{d}x-14\int x^{2}\mathrm{d}x-\frac{\int x\mathrm{d}x}{2}+\int 3\mathrm{d}x
Factor out the constant in each of the terms.
\frac{5x^{6}}{3}-\int x^{3}\mathrm{d}x-14\int x^{2}\mathrm{d}x-\frac{\int x\mathrm{d}x}{2}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 10 times \frac{x^{6}}{6}.
\frac{5x^{6}}{3}-\frac{x^{4}}{4}-14\int x^{2}\mathrm{d}x-\frac{\int x\mathrm{d}x}{2}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -1 times \frac{x^{4}}{4}.
\frac{5x^{6}}{3}-\frac{x^{4}}{4}-\frac{14x^{3}}{3}-\frac{\int x\mathrm{d}x}{2}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -14 times \frac{x^{3}}{3}.
\frac{5x^{6}}{3}-\frac{x^{4}}{4}-\frac{14x^{3}}{3}-\frac{x^{2}}{4}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -\frac{1}{2} times \frac{x^{2}}{2}.
\frac{5x^{6}}{3}-\frac{x^{4}}{4}-\frac{14x^{3}}{3}-\frac{x^{2}}{4}+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{5x^{6}}{3}-\frac{x^{4}}{4}-\frac{14x^{3}}{3}-\frac{x^{2}}{4}+3x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.