Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 10x^{4}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x+\int 6\sqrt{x}\mathrm{d}x+\int -3\mathrm{d}x
Integrate the sum term by term.
10\int x^{4}\mathrm{d}x+\int \frac{1}{x^{2}}\mathrm{d}x+6\int \sqrt{x}\mathrm{d}x+\int -3\mathrm{d}x
Factor out the constant in each of the terms.
2x^{5}+\int \frac{1}{x^{2}}\mathrm{d}x+6\int \sqrt{x}\mathrm{d}x+\int -3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 10 times \frac{x^{5}}{5}.
2x^{5}-\frac{1}{x}+6\int \sqrt{x}\mathrm{d}x+\int -3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{2}}\mathrm{d}x with -\frac{1}{x}.
2x^{5}-\frac{1}{x}+4x^{\frac{3}{2}}+\int -3\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify. Multiply 6 times \frac{2x^{\frac{3}{2}}}{3}.
2x^{5}-\frac{1}{x}+4x^{\frac{3}{2}}-3x
Find the integral of -3 using the table of common integrals rule \int a\mathrm{d}x=ax.
2x^{5}-\frac{1}{x}+4x^{\frac{3}{2}}-3x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.