Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{3}+6x^{2}-\frac{3}{2}x+\frac{1}{x}\mathrm{d}x
Rewrite x^{2} as xx. Cancel out x in both numerator and denominator.
\int x^{3}\mathrm{d}x+\int 6x^{2}\mathrm{d}x+\int -\frac{3x}{2}\mathrm{d}x+\int \frac{1}{x}\mathrm{d}x
Integrate the sum term by term.
\int x^{3}\mathrm{d}x+6\int x^{2}\mathrm{d}x-\frac{3\int x\mathrm{d}x}{2}+\int \frac{1}{x}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{4}}{4}+6\int x^{2}\mathrm{d}x-\frac{3\int x\mathrm{d}x}{2}+\int \frac{1}{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{4}}{4}+2x^{3}-\frac{3\int x\mathrm{d}x}{2}+\int \frac{1}{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 6 times \frac{x^{3}}{3}.
\frac{x^{4}}{4}+2x^{3}-\frac{3x^{2}}{4}+\int \frac{1}{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -\frac{3}{2} times \frac{x^{2}}{2}.
\frac{x^{4}}{4}+2x^{3}-\frac{3x^{2}}{4}+\ln(|x|)
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
\frac{x^{4}}{4}+2x^{3}-\frac{3x^{2}}{4}+\ln(|x|)+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.