Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{5}{x^{\frac{2}{3}}}\mathrm{d}x+\int \frac{2}{x^{\frac{3}{2}}}\mathrm{d}x
Integrate the sum term by term.
5\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x+2\int \frac{1}{x^{\frac{3}{2}}}\mathrm{d}x
Factor out the constant in each of the terms.
15\sqrt[3]{x}+2\int \frac{1}{x^{\frac{3}{2}}}\mathrm{d}x
Rewrite \frac{1}{x^{\frac{2}{3}}} as x^{-\frac{2}{3}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{2}{3}}\mathrm{d}x with \frac{x^{\frac{1}{3}}}{\frac{1}{3}}. Simplify and convert from exponential to radical form. Multiply 5 times 3\sqrt[3]{x}.
15\sqrt[3]{x}-\frac{4}{\sqrt{x}}
Rewrite \frac{1}{x^{\frac{3}{2}}} as x^{-\frac{3}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{3}{2}}\mathrm{d}x with \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}}. Simplify and convert from exponential to radical form. Multiply 2 times -\frac{2}{\sqrt{x}}.
15\sqrt[3]{x}-\frac{4}{\sqrt{x}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.