Evaluate
15\sqrt[3]{x}-\frac{4}{\sqrt{x}}+С
Differentiate w.r.t. x
\frac{5}{x^{\frac{2}{3}}}+\frac{2}{x^{\frac{3}{2}}}
Share
Copied to clipboard
\int \frac{5}{x^{\frac{2}{3}}}\mathrm{d}x+\int \frac{2}{x^{\frac{3}{2}}}\mathrm{d}x
Integrate the sum term by term.
5\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x+2\int \frac{1}{x^{\frac{3}{2}}}\mathrm{d}x
Factor out the constant in each of the terms.
15\sqrt[3]{x}+2\int \frac{1}{x^{\frac{3}{2}}}\mathrm{d}x
Rewrite \frac{1}{x^{\frac{2}{3}}} as x^{-\frac{2}{3}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{2}{3}}\mathrm{d}x with \frac{x^{\frac{1}{3}}}{\frac{1}{3}}. Simplify and convert from exponential to radical form. Multiply 5 times 3\sqrt[3]{x}.
15\sqrt[3]{x}-\frac{4}{\sqrt{x}}
Rewrite \frac{1}{x^{\frac{3}{2}}} as x^{-\frac{3}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{3}{2}}\mathrm{d}x with \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}}. Simplify and convert from exponential to radical form. Multiply 2 times -\frac{2}{\sqrt{x}}.
15\sqrt[3]{x}-\frac{4}{\sqrt{x}}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}