Evaluate
\frac{343x^{8}}{8}-196x^{6}+336x^{4}-256x^{2}+С
Differentiate w.r.t. x
x\left(7x^{2}-8\right)^{3}
Share
Copied to clipboard
\int \left(343\left(x^{2}\right)^{3}-1176\left(x^{2}\right)^{2}+1344x^{2}-512\right)x\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(7x^{2}-8\right)^{3}.
\int \left(343x^{6}-1176\left(x^{2}\right)^{2}+1344x^{2}-512\right)x\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\int \left(343x^{6}-1176x^{4}+1344x^{2}-512\right)x\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int 343x^{7}-1176x^{5}+1344x^{3}-512x\mathrm{d}x
Use the distributive property to multiply 343x^{6}-1176x^{4}+1344x^{2}-512 by x.
\int 343x^{7}\mathrm{d}x+\int -1176x^{5}\mathrm{d}x+\int 1344x^{3}\mathrm{d}x+\int -512x\mathrm{d}x
Integrate the sum term by term.
343\int x^{7}\mathrm{d}x-1176\int x^{5}\mathrm{d}x+1344\int x^{3}\mathrm{d}x-512\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{343x^{8}}{8}-1176\int x^{5}\mathrm{d}x+1344\int x^{3}\mathrm{d}x-512\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{7}\mathrm{d}x with \frac{x^{8}}{8}. Multiply 343 times \frac{x^{8}}{8}.
\frac{343x^{8}}{8}-196x^{6}+1344\int x^{3}\mathrm{d}x-512\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply -1176 times \frac{x^{6}}{6}.
\frac{343x^{8}}{8}-196x^{6}+336x^{4}-512\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 1344 times \frac{x^{4}}{4}.
\frac{343x^{8}}{8}-196x^{6}+336x^{4}-256x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -512 times \frac{x^{2}}{2}.
-256x^{2}+336x^{4}-196x^{6}+\frac{343x^{8}}{8}
Simplify.
-256x^{2}+336x^{4}-196x^{6}+\frac{343x^{8}}{8}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}