Evaluate
\frac{2x^{11}}{11}-\frac{3x^{8}}{4}+\frac{6x^{5}}{5}-x^{2}+С
Differentiate w.r.t. x
2x\left(x^{3}-1\right)^{3}
Share
Copied to clipboard
\int \left(\left(x^{3}\right)^{3}-3\left(x^{3}\right)^{2}+3x^{3}-1\right)\times 2x\mathrm{d}x
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x^{3}-1\right)^{3}.
\int \left(x^{9}-3\left(x^{3}\right)^{2}+3x^{3}-1\right)\times 2x\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\int \left(x^{9}-3x^{6}+3x^{3}-1\right)\times 2x\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int \left(2x^{9}-6x^{6}+6x^{3}-2\right)x\mathrm{d}x
Use the distributive property to multiply x^{9}-3x^{6}+3x^{3}-1 by 2.
\int 2x^{10}-6x^{7}+6x^{4}-2x\mathrm{d}x
Use the distributive property to multiply 2x^{9}-6x^{6}+6x^{3}-2 by x.
\int 2x^{10}\mathrm{d}x+\int -6x^{7}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int -2x\mathrm{d}x
Integrate the sum term by term.
2\int x^{10}\mathrm{d}x-6\int x^{7}\mathrm{d}x+6\int x^{4}\mathrm{d}x-2\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{11}}{11}-6\int x^{7}\mathrm{d}x+6\int x^{4}\mathrm{d}x-2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{10}\mathrm{d}x with \frac{x^{11}}{11}. Multiply 2 times \frac{x^{11}}{11}.
\frac{2x^{11}}{11}-\frac{3x^{8}}{4}+6\int x^{4}\mathrm{d}x-2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{7}\mathrm{d}x with \frac{x^{8}}{8}. Multiply -6 times \frac{x^{8}}{8}.
\frac{2x^{11}}{11}-\frac{3x^{8}}{4}+\frac{6x^{5}}{5}-2\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 6 times \frac{x^{5}}{5}.
\frac{2x^{11}}{11}-\frac{3x^{8}}{4}+\frac{6x^{5}}{5}-x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -2 times \frac{x^{2}}{2}.
\frac{2x^{11}}{11}-\frac{3x^{8}}{4}+\frac{6x^{5}}{5}-x^{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}