Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \sqrt{x}\mathrm{d}x+\int -\frac{1}{\sqrt{x}}\mathrm{d}x
Integrate the sum term by term.
\int \sqrt{x}\mathrm{d}x-\int \frac{1}{\sqrt{x}}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{\frac{3}{2}}}{3}-\int \frac{1}{\sqrt{x}}\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{2x^{\frac{3}{2}}}{3}-2\sqrt{x}
Rewrite \frac{1}{\sqrt{x}} as x^{-\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{-\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{1}{2}}}{\frac{1}{2}}. Simplify and convert from exponential to radical form. Multiply -1 times 2\sqrt{x}.
\frac{2x^{\frac{3}{2}}}{3}-2\sqrt{x}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.