Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\int \sqrt{2x-0}\mathrm{d}x
Multiply 0 and 5 to get 0.
\int \sqrt{2x+0}\mathrm{d}x
Multiply -1 and 0 to get 0.
\int \sqrt{2x}\mathrm{d}x
Anything plus zero gives itself.
\sqrt{2}\int \sqrt{x}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\sqrt{2}\times \frac{2x^{\frac{3}{2}}}{3}
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{2\sqrt{2}x^{\frac{3}{2}}}{3}
Simplify.
\frac{2\sqrt{2}x^{\frac{3}{2}}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.