Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \left(x^{2}-4\right)\left(x^{2}+4\right)\mathrm{d}x
Use the distributive property to multiply x-2 by x+2 and combine like terms.
\int \left(x^{2}\right)^{2}-16\mathrm{d}x
Consider \left(x^{2}-4\right)\left(x^{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
\int x^{4}-16\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\int x^{4}\mathrm{d}x+\int -16\mathrm{d}x
Integrate the sum term by term.
\frac{x^{5}}{5}+\int -16\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{x^{5}}{5}-16x
Find the integral of -16 using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{x^{5}}{5}-16x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.