Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \int x\mathrm{d}xy\mathrm{d}y\int z\mathrm{d}z
Factor out the constant using \int af\left(z\right)\mathrm{d}z=a\int f\left(z\right)\mathrm{d}z.
\int \int x\mathrm{d}xy\mathrm{d}y\times \frac{z^{2}}{2}
Since \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} for k\neq -1, replace \int z\mathrm{d}z with \frac{z^{2}}{2}.
\frac{\left(\frac{\left(\frac{x^{2}}{2}+С\right)y^{2}}{2}+С\right)z^{2}}{2}
Simplify.
\frac{\left(\frac{\left(\frac{x^{2}}{2}+С\right)y^{2}}{2}+С\right)z^{2}}{2}+С
If F\left(z\right) is an antiderivative of f\left(z\right), then the set of all antiderivatives of f\left(z\right) is given by F\left(z\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.