Evaluate
\frac{С\left(yz\right)^{2}}{4}+\frac{\left(xyz\right)^{2}}{8}+\frac{С_{1}z^{2}}{2}+С_{2}
Differentiate w.r.t. x
\frac{x\left(yz\right)^{2}}{4}
Share
Copied to clipboard
\int \int x\mathrm{d}xy\mathrm{d}y\int z\mathrm{d}z
Factor out the constant using \int af\left(z\right)\mathrm{d}z=a\int f\left(z\right)\mathrm{d}z.
\int \int x\mathrm{d}xy\mathrm{d}y\times \frac{z^{2}}{2}
Since \int z^{k}\mathrm{d}z=\frac{z^{k+1}}{k+1} for k\neq -1, replace \int z\mathrm{d}z with \frac{z^{2}}{2}.
\frac{\left(\frac{\left(\frac{x^{2}}{2}+С\right)y^{2}}{2}+С\right)z^{2}}{2}
Simplify.
\frac{\left(\frac{\left(\frac{x^{2}}{2}+С\right)y^{2}}{2}+С\right)z^{2}}{2}+С
If F\left(z\right) is an antiderivative of f\left(z\right), then the set of all antiderivatives of f\left(z\right) is given by F\left(z\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}