Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{\left(2x-1\right)\left(3x-5\right)\left(2x+1\right)\left(3x+5\right)}{3x-5}\mathrm{d}x
Factor the expressions that are not already factored in \frac{36x^{4}-109x^{2}+25}{3x-5}.
\int \left(2x-1\right)\left(2x+1\right)\left(3x+5\right)\mathrm{d}x
Cancel out 3x-5 in both numerator and denominator.
\int 12x^{3}+20x^{2}-3x-5\mathrm{d}x
Expand the expression.
\int 12x^{3}\mathrm{d}x+\int 20x^{2}\mathrm{d}x+\int -3x\mathrm{d}x+\int -5\mathrm{d}x
Integrate the sum term by term.
12\int x^{3}\mathrm{d}x+20\int x^{2}\mathrm{d}x-3\int x\mathrm{d}x+\int -5\mathrm{d}x
Factor out the constant in each of the terms.
3x^{4}+20\int x^{2}\mathrm{d}x-3\int x\mathrm{d}x+\int -5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 12 times \frac{x^{4}}{4}.
3x^{4}+\frac{20x^{3}}{3}-3\int x\mathrm{d}x+\int -5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply 20 times \frac{x^{3}}{3}.
3x^{4}+\frac{20x^{3}}{3}-\frac{3x^{2}}{2}+\int -5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -3 times \frac{x^{2}}{2}.
3x^{4}+\frac{20x^{3}}{3}-\frac{3x^{2}}{2}-5x
Find the integral of -5 using the table of common integrals rule \int a\mathrm{d}x=ax.
-5x-\frac{3x^{2}}{2}+\frac{20x^{3}}{3}+3x^{4}
Simplify.
-5x-\frac{3x^{2}}{2}+\frac{20x^{3}}{3}+3x^{4}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.