Evaluate
\frac{15997600720000x}{3}+С
Differentiate w.r.t. x
\frac{15997600720000}{3} = 5332533573333\frac{1}{3} = 5332533573333.333
Share
Copied to clipboard
\int \frac{2}{3}\times 8000000000000-2\times 20000^{2}+12\times 20000\mathrm{d}x
Calculate 20000 to the power of 3 and get 8000000000000.
\int \frac{2\times 8000000000000}{3}-2\times 20000^{2}+12\times 20000\mathrm{d}x
Express \frac{2}{3}\times 8000000000000 as a single fraction.
\int \frac{16000000000000}{3}-2\times 20000^{2}+12\times 20000\mathrm{d}x
Multiply 2 and 8000000000000 to get 16000000000000.
\int \frac{16000000000000}{3}-2\times 400000000+12\times 20000\mathrm{d}x
Calculate 20000 to the power of 2 and get 400000000.
\int \frac{16000000000000}{3}-800000000+12\times 20000\mathrm{d}x
Multiply 2 and 400000000 to get 800000000.
\int \frac{16000000000000}{3}-\frac{2400000000}{3}+12\times 20000\mathrm{d}x
Convert 800000000 to fraction \frac{2400000000}{3}.
\int \frac{16000000000000-2400000000}{3}+12\times 20000\mathrm{d}x
Since \frac{16000000000000}{3} and \frac{2400000000}{3} have the same denominator, subtract them by subtracting their numerators.
\int \frac{15997600000000}{3}+12\times 20000\mathrm{d}x
Subtract 2400000000 from 16000000000000 to get 15997600000000.
\int \frac{15997600000000}{3}+240000\mathrm{d}x
Multiply 12 and 20000 to get 240000.
\int \frac{15997600000000}{3}+\frac{720000}{3}\mathrm{d}x
Convert 240000 to fraction \frac{720000}{3}.
\int \frac{15997600000000+720000}{3}\mathrm{d}x
Since \frac{15997600000000}{3} and \frac{720000}{3} have the same denominator, add them by adding their numerators.
\int \frac{15997600720000}{3}\mathrm{d}x
Add 15997600000000 and 720000 to get 15997600720000.
\frac{15997600720000x}{3}
Find the integral of \frac{15997600720000}{3} using the table of common integrals rule \int a\mathrm{d}x=ax.
\frac{15997600720000x}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}