Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{1}{x}\mathrm{d}x+\int 2x\mathrm{d}x+\int -4x\mathrm{d}x
Integrate the sum term by term.
\int \frac{1}{x}\mathrm{d}x+2\int x\mathrm{d}x-4\int x\mathrm{d}x
Factor out the constant in each of the terms.
\ln(|x|)+2\int x\mathrm{d}x-4\int x\mathrm{d}x
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
\ln(|x|)+x^{2}-4\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 2 times \frac{x^{2}}{2}.
\ln(|x|)+x^{2}-2x^{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -4 times \frac{x^{2}}{2}.
\ln(|x|)-x^{2}
Simplify.
\ln(|x|)-x^{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.