Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{-\sqrt{2}}{-2}\sqrt{2^{2}\times 24^{2}-24^{2}}\mathrm{d}x
Cancel out x^{2} in both numerator and denominator.
\int \frac{\left(-\sqrt{2}\right)\sqrt{2^{2}\times 24^{2}-24^{2}}}{-2}\mathrm{d}x
Express \frac{-\sqrt{2}}{-2}\sqrt{2^{2}\times 24^{2}-24^{2}} as a single fraction.
\int \frac{\left(-\sqrt{2}\right)\sqrt{4\times 24^{2}-24^{2}}}{-2}\mathrm{d}x
Calculate 2 to the power of 2 and get 4.
\int \frac{\left(-\sqrt{2}\right)\sqrt{4\times 576-24^{2}}}{-2}\mathrm{d}x
Calculate 24 to the power of 2 and get 576.
\int \frac{\left(-\sqrt{2}\right)\sqrt{2304-24^{2}}}{-2}\mathrm{d}x
Multiply 4 and 576 to get 2304.
\int \frac{\left(-\sqrt{2}\right)\sqrt{2304-576}}{-2}\mathrm{d}x
Calculate 24 to the power of 2 and get 576.
\int \frac{\left(-\sqrt{2}\right)\sqrt{1728}}{-2}\mathrm{d}x
Subtract 576 from 2304 to get 1728.
\int \frac{\left(-\sqrt{2}\right)\times 24\sqrt{3}}{-2}\mathrm{d}x
Factor 1728=24^{2}\times 3. Rewrite the square root of the product \sqrt{24^{2}\times 3} as the product of square roots \sqrt{24^{2}}\sqrt{3}. Take the square root of 24^{2}.
\int \left(-\sqrt{2}\right)\left(-12\right)\sqrt{3}\mathrm{d}x
Divide \left(-\sqrt{2}\right)\times 24\sqrt{3} by -2 to get \left(-\sqrt{2}\right)\left(-12\right)\sqrt{3}.
\int 12\sqrt{2}\sqrt{3}\mathrm{d}x
Multiply -1 and -12 to get 12.
\int 12\sqrt{6}\mathrm{d}x
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
12\sqrt{6}x
Find the integral of 12\sqrt{6} using the table of common integrals rule \int a\mathrm{d}x=ax.
12\sqrt{6}x+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.