Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int \frac{\left(-\frac{7}{5}\right)^{2}b^{2}\left(x^{3}\right)^{2}}{\left(-2x^{2}\right)^{3}}\mathrm{d}x
Expand \left(-\frac{7}{5}bx^{3}\right)^{2}.
\int \frac{\left(-\frac{7}{5}\right)^{2}b^{2}x^{6}}{\left(-2x^{2}\right)^{3}}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\int \frac{\frac{49}{25}b^{2}x^{6}}{\left(-2x^{2}\right)^{3}}\mathrm{d}x
Calculate -\frac{7}{5} to the power of 2 and get \frac{49}{25}.
\int \frac{\frac{49}{25}b^{2}x^{6}}{\left(-2\right)^{3}\left(x^{2}\right)^{3}}\mathrm{d}x
Expand \left(-2x^{2}\right)^{3}.
\int \frac{\frac{49}{25}b^{2}x^{6}}{\left(-2\right)^{3}x^{6}}\mathrm{d}x
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\int \frac{\frac{49}{25}b^{2}x^{6}}{-8x^{6}}\mathrm{d}x
Calculate -2 to the power of 3 and get -8.
\int \frac{\frac{49}{25}b^{2}}{-8}\mathrm{d}x
Cancel out x^{6} in both numerator and denominator.
\int -\frac{49}{200}b^{2}\mathrm{d}x
Divide \frac{49}{25}b^{2} by -8 to get -\frac{49}{200}b^{2}.
\left(-\frac{49b^{2}}{200}\right)x
Find the integral of -\frac{49b^{2}}{200} using the table of common integrals rule \int a\mathrm{d}x=ax.
-\frac{49b^{2}x}{200}
Simplify.
-\frac{49b^{2}x}{200}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.