\int y d x + 2 x d y = \int _ { 0 } ^ { 2 \pi } ( 1 - \cos t ) ( t - \sin t ) ^ { \prime } + 2 ( t - \sin t ) ( 1 - \cos t ) ^ { \prime } d t
Solve for d
\left\{\begin{matrix}d=-\frac{1}{2}+\frac{С}{xy}\text{, }&y\neq 0\text{ and }x\neq 0\\d\in \mathrm{R}\text{, }&\left(x=0\text{ or }y=0\right)\text{ and }С=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{С}{y\left(2d+1\right)}\text{, }&d\neq -\frac{1}{2}\text{ and }y\neq 0\\x\in \mathrm{R}\text{, }&\left(y=0\text{ or }d=-\frac{1}{2}\right)\text{ and }С=0\end{matrix}\right.
Share
Copied to clipboard
2xdy=\int _{0}^{2\pi }\left(1-\cos(t)\right)\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))+2\left(t-\sin(t)\right)\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t))\mathrm{d}t-\int y\mathrm{d}x
Subtract \int y\mathrm{d}x from both sides.
2xdy=\int _{0}^{2\pi }\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))-\cos(t)\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))+2\left(t-\sin(t)\right)\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t))\mathrm{d}t-\int y\mathrm{d}x
Use the distributive property to multiply 1-\cos(t) by \frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t)).
2xdy=\int _{0}^{2\pi }\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))-\cos(t)\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))+\left(2t-2\sin(t)\right)\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t))\mathrm{d}t-\int y\mathrm{d}x
Use the distributive property to multiply 2 by t-\sin(t).
2xdy=\int _{0}^{2\pi }\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))-\cos(t)\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))+2t\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t))-2\sin(t)\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t))\mathrm{d}t-\int y\mathrm{d}x
Use the distributive property to multiply 2t-2\sin(t) by \frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t)).
2xyd=-xy-С
The equation is in standard form.
\frac{2xyd}{2xy}=\frac{-xy-С}{2xy}
Divide both sides by 2xy.
d=\frac{-xy-С}{2xy}
Dividing by 2xy undoes the multiplication by 2xy.
d=-\frac{1}{2}+\frac{С}{xy}
Divide -yx-С by 2xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}