Skip to main content
Solve for d
Tick mark Image
Solve for x
Tick mark Image

Similar Problems from Web Search

Share

2xdy=\int _{0}^{2\pi }\left(1-\cos(t)\right)\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))+2\left(t-\sin(t)\right)\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t))\mathrm{d}t-\int y\mathrm{d}x
Subtract \int y\mathrm{d}x from both sides.
2xdy=\int _{0}^{2\pi }\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))-\cos(t)\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))+2\left(t-\sin(t)\right)\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t))\mathrm{d}t-\int y\mathrm{d}x
Use the distributive property to multiply 1-\cos(t) by \frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t)).
2xdy=\int _{0}^{2\pi }\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))-\cos(t)\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))+\left(2t-2\sin(t)\right)\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t))\mathrm{d}t-\int y\mathrm{d}x
Use the distributive property to multiply 2 by t-\sin(t).
2xdy=\int _{0}^{2\pi }\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))-\cos(t)\frac{\mathrm{d}}{\mathrm{d}x}(t-\sin(t))+2t\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t))-2\sin(t)\frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t))\mathrm{d}t-\int y\mathrm{d}x
Use the distributive property to multiply 2t-2\sin(t) by \frac{\mathrm{d}}{\mathrm{d}x}(1-\cos(t)).
2xyd=-xy-С
The equation is in standard form.
\frac{2xyd}{2xy}=\frac{-xy-С}{2xy}
Divide both sides by 2xy.
d=\frac{-xy-С}{2xy}
Dividing by 2xy undoes the multiplication by 2xy.
d=-\frac{1}{2}+\frac{С}{xy}
Divide -yx-С by 2xy.