Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image

Similar Problems from Web Search

Share

\int y^{4}-3y^{2}\mathrm{d}y
Use the distributive property to multiply y^{2} by y^{2}-3.
\int y^{4}\mathrm{d}y+\int -3y^{2}\mathrm{d}y
Integrate the sum term by term.
\int y^{4}\mathrm{d}y-3\int y^{2}\mathrm{d}y
Factor out the constant in each of the terms.
\frac{y^{5}}{5}-3\int y^{2}\mathrm{d}y
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{4}\mathrm{d}y with \frac{y^{5}}{5}.
\frac{y^{5}}{5}-y^{3}
Since \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} for k\neq -1, replace \int y^{2}\mathrm{d}y with \frac{y^{3}}{3}. Multiply -3 times \frac{y^{3}}{3}.
\frac{y^{5}}{5}-y^{3}+С
If F\left(y\right) is an antiderivative of f\left(y\right), then the set of all antiderivatives of f\left(y\right) is given by F\left(y\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.