Solve for a
\left\{\begin{matrix}a=\frac{2x^{3}-x^{2}-С}{x^{2}+С_{1}}\text{, }&С\neq -x^{2}\text{ and }x\neq 0\text{ and }\left(С_{1}<0\text{ or }|x|\neq \frac{\sqrt{С_{2}}}{2}\right)\text{ and }С_{3}\neq -\frac{x^{2}}{2}\\a\neq -1\text{, }&С=0\text{ and }x=0\end{matrix}\right.
Share
Copied to clipboard
\left(a+1\right)\int x\mathrm{d}x=x^{4-1}
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by a+1.
a\int x\mathrm{d}x+\int x\mathrm{d}x=x^{4-1}
Use the distributive property to multiply a+1 by \int x\mathrm{d}x.
a\int x\mathrm{d}x+\int x\mathrm{d}x=x^{3}
Subtract 1 from 4 to get 3.
a\int x\mathrm{d}x=x^{3}-\int x\mathrm{d}x
Subtract \int x\mathrm{d}x from both sides.
\left(\frac{x^{2}}{2}+С\right)a=x^{3}-\frac{x^{2}}{2}-С
The equation is in standard form.
\frac{\left(\frac{x^{2}}{2}+С\right)a}{\frac{x^{2}}{2}+С}=\frac{x^{3}-\frac{x^{2}}{2}-С}{\frac{x^{2}}{2}+С}
Divide both sides by \frac{1}{2}x^{2}+С.
a=\frac{x^{3}-\frac{x^{2}}{2}-С}{\frac{x^{2}}{2}+С}
Dividing by \frac{1}{2}x^{2}+С undoes the multiplication by \frac{1}{2}x^{2}+С.
a=\frac{2x^{3}-x^{2}-2С}{x^{2}+2С_{1}}
Divide x^{3}-\frac{x^{2}}{2}-С by \frac{1}{2}x^{2}+С.
a=\frac{2x^{3}-x^{2}-2С}{x^{2}+2С_{1}}\text{, }a\neq -1
Variable a cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}