Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(a+1\right)\int x\mathrm{d}x=x^{4-1}
Variable a cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by a+1.
a\int x\mathrm{d}x+\int x\mathrm{d}x=x^{4-1}
Use the distributive property to multiply a+1 by \int x\mathrm{d}x.
a\int x\mathrm{d}x+\int x\mathrm{d}x=x^{3}
Subtract 1 from 4 to get 3.
a\int x\mathrm{d}x=x^{3}-\int x\mathrm{d}x
Subtract \int x\mathrm{d}x from both sides.
\left(\frac{x^{2}}{2}+С\right)a=x^{3}-\frac{x^{2}}{2}-С
The equation is in standard form.
\frac{\left(\frac{x^{2}}{2}+С\right)a}{\frac{x^{2}}{2}+С}=\frac{x^{3}-\frac{x^{2}}{2}-С}{\frac{x^{2}}{2}+С}
Divide both sides by \frac{1}{2}x^{2}+С.
a=\frac{x^{3}-\frac{x^{2}}{2}-С}{\frac{x^{2}}{2}+С}
Dividing by \frac{1}{2}x^{2}+С undoes the multiplication by \frac{1}{2}x^{2}+С.
a=\frac{2x^{3}-x^{2}-2С}{x^{2}+2С_{1}}
Divide x^{3}-\frac{x^{2}}{2}-С by \frac{1}{2}x^{2}+С.
a=\frac{2x^{3}-x^{2}-2С}{x^{2}+2С_{1}}\text{, }a\neq -1
Variable a cannot be equal to -1.