Solve for c
c=\frac{x^{2}}{2}-x+С
x\neq 0
Solve for x
\left\{\begin{matrix}x=-\sqrt{С+2c}+1\text{, }&\left(С<0\text{ or }c\neq \frac{1-С_{1}}{2}\right)\text{ and }c\geq С_{2}\\x=\sqrt{С+2c}+1\text{, }&c\geq С\end{matrix}\right.
Share
Copied to clipboard
x\int x\mathrm{d}x=x^{2}+xc
Multiply both sides of the equation by x.
x^{2}+xc=x\int x\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
xc=x\int x\mathrm{d}x-x^{2}
Subtract x^{2} from both sides.
xc=x\left(\frac{x^{2}}{2}+С\right)-x^{2}
The equation is in standard form.
\frac{xc}{x}=\frac{x\left(\frac{x^{2}}{2}-x+С\right)}{x}
Divide both sides by x.
c=\frac{x\left(\frac{x^{2}}{2}-x+С\right)}{x}
Dividing by x undoes the multiplication by x.
c=\frac{x^{2}}{2}-x+С
Divide x\left(\frac{x^{2}}{2}+С-x\right) by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}