Skip to main content
Solve for c
Tick mark Image

Similar Problems from Web Search

Share

6\int x\left(z+x^{7}\right)\mathrm{d}x=\left(z+x\right)^{2}+6c
Multiply both sides of the equation by 6.
6\int xz+x^{8}\mathrm{d}x=\left(z+x\right)^{2}+6c
Use the distributive property to multiply x by z+x^{7}.
6\int xz+x^{8}\mathrm{d}x=z^{2}+2zx+x^{2}+6c
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(z+x\right)^{2}.
z^{2}+2zx+x^{2}+6c=6\int xz+x^{8}\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
2zx+x^{2}+6c=6\int xz+x^{8}\mathrm{d}x-z^{2}
Subtract z^{2} from both sides.
x^{2}+6c=6\int xz+x^{8}\mathrm{d}x-z^{2}-2zx
Subtract 2zx from both sides.
6c=6\int xz+x^{8}\mathrm{d}x-z^{2}-2zx-x^{2}
Subtract x^{2} from both sides.
6c=\frac{2x^{9}}{3}+3zx^{2}-2xz-x^{2}-z^{2}+6С
The equation is in standard form.
\frac{6c}{6}=\frac{\frac{2x^{9}}{3}+3zx^{2}-\left(x+z\right)^{2}+6С}{6}
Divide both sides by 6.
c=\frac{\frac{2x^{9}}{3}+3zx^{2}-\left(x+z\right)^{2}+6С}{6}
Dividing by 6 undoes the multiplication by 6.
c=\frac{x^{9}}{9}+\frac{zx^{2}}{2}-\frac{\left(x+z\right)^{2}}{6}+С
Divide 3zx^{2}+\frac{2x^{9}}{3}+6С-\left(z+x\right)^{2} by 6.