Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 5x^{7}-6x^{6}\mathrm{d}x
Use the distributive property to multiply x^{6} by 5x-6.
\int 5x^{7}\mathrm{d}x+\int -6x^{6}\mathrm{d}x
Integrate the sum term by term.
5\int x^{7}\mathrm{d}x-6\int x^{6}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{5x^{8}}{8}-6\int x^{6}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{7}\mathrm{d}x with \frac{x^{8}}{8}. Multiply 5 times \frac{x^{8}}{8}.
\frac{5x^{8}}{8}-\frac{6x^{7}}{7}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply -6 times \frac{x^{7}}{7}.
\frac{5x^{8}}{8}-\frac{6x^{7}}{7}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.