Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{7}+2x^{5}+x^{3}\mathrm{d}x
Use the distributive property to multiply x^{3} by x^{4}+2x^{2}+1.
\int x^{7}\mathrm{d}x+\int 2x^{5}\mathrm{d}x+\int x^{3}\mathrm{d}x
Integrate the sum term by term.
\int x^{7}\mathrm{d}x+2\int x^{5}\mathrm{d}x+\int x^{3}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{8}}{8}+2\int x^{5}\mathrm{d}x+\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{7}\mathrm{d}x with \frac{x^{8}}{8}.
\frac{x^{8}}{8}+\frac{x^{6}}{3}+\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{5}\mathrm{d}x with \frac{x^{6}}{6}. Multiply 2 times \frac{x^{6}}{6}.
\frac{x^{8}}{8}+\frac{x^{6}}{3}+\frac{x^{4}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}.
\frac{x^{8}}{8}+\frac{x^{6}}{3}+\frac{x^{4}}{4}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.