Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 2x^{4}-5x^{3}\mathrm{d}x
Use the distributive property to multiply x^{3} by 2x-5.
\int 2x^{4}\mathrm{d}x+\int -5x^{3}\mathrm{d}x
Integrate the sum term by term.
2\int x^{4}\mathrm{d}x-5\int x^{3}\mathrm{d}x
Factor out the constant in each of the terms.
\frac{2x^{5}}{5}-5\int x^{3}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 2 times \frac{x^{5}}{5}.
\frac{2x^{5}}{5}-\frac{5x^{4}}{4}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply -5 times \frac{x^{4}}{4}.
\frac{2x^{5}}{5}-\frac{5x^{4}}{4}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.