Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2x}u^{2}f\mathrm{d}u
Multiply u and u to get u^{2}.
x^{2x}f\int u^{2}\mathrm{d}u
Factor out the constant using \int af\left(u\right)\mathrm{d}u=a\int f\left(u\right)\mathrm{d}u.
x^{2x}f\times \frac{u^{3}}{3}
Since \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} for k\neq -1, replace \int u^{2}\mathrm{d}u with \frac{u^{3}}{3}.
\frac{x^{2x}fu^{3}}{3}
Simplify.
\frac{x^{2x}fu^{3}}{3}+С
If F\left(u\right) is an antiderivative of f\left(u\right), then the set of all antiderivatives of f\left(u\right) is given by F\left(u\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.