Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 5x^{4}+12x^{3}-6x^{2}\mathrm{d}x
Use the distributive property to multiply x^{2} by 5x^{2}+12x-6.
\int 5x^{4}\mathrm{d}x+\int 12x^{3}\mathrm{d}x+\int -6x^{2}\mathrm{d}x
Integrate the sum term by term.
5\int x^{4}\mathrm{d}x+12\int x^{3}\mathrm{d}x-6\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
x^{5}+12\int x^{3}\mathrm{d}x-6\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}. Multiply 5 times \frac{x^{5}}{5}.
x^{5}+3x^{4}-6\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 12 times \frac{x^{4}}{4}.
x^{5}+3x^{4}-2x^{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -6 times \frac{x^{3}}{3}.
x^{5}+3x^{4}-2x^{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.