Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 20x^{9}-7x^{6}+x^{2}\mathrm{d}x
Use the distributive property to multiply x^{2} by 20x^{7}-7x^{4}+1.
\int 20x^{9}\mathrm{d}x+\int -7x^{6}\mathrm{d}x+\int x^{2}\mathrm{d}x
Integrate the sum term by term.
20\int x^{9}\mathrm{d}x-7\int x^{6}\mathrm{d}x+\int x^{2}\mathrm{d}x
Factor out the constant in each of the terms.
2x^{10}-7\int x^{6}\mathrm{d}x+\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{9}\mathrm{d}x with \frac{x^{10}}{10}. Multiply 20 times \frac{x^{10}}{10}.
2x^{10}-x^{7}+\int x^{2}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{6}\mathrm{d}x with \frac{x^{7}}{7}. Multiply -7 times \frac{x^{7}}{7}.
2x^{10}-x^{7}+\frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
2x^{10}-x^{7}+\frac{x^{3}}{3}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.