Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}\left(\frac{x}{x}-\frac{1}{x}\right)\mathrm{d}x
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\int x^{2}\times \frac{x-1}{x}\mathrm{d}x
Since \frac{x}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\int \frac{x^{2}\left(x-1\right)}{x}\mathrm{d}x
Express x^{2}\times \frac{x-1}{x} as a single fraction.
\int x\left(x-1\right)\mathrm{d}x
Cancel out x in both numerator and denominator.
\int x^{2}-x\mathrm{d}x
Use the distributive property to multiply x by x-1.
\int x^{2}\mathrm{d}x+\int -x\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
\frac{x^{3}}{3}-\frac{x^{2}}{2}+С
If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.