Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

a\left(\cos(t)\right)^{3}=\int x\mathrm{d}x
Swap sides so that all variable terms are on the left hand side.
\left(\cos(t)\right)^{3}a=\frac{x^{2}}{2}+С
The equation is in standard form.
\frac{\left(\cos(t)\right)^{3}a}{\left(\cos(t)\right)^{3}}=\frac{\frac{x^{2}}{2}+С}{\left(\cos(t)\right)^{3}}
Divide both sides by \left(\cos(t)\right)^{3}.
a=\frac{\frac{x^{2}}{2}+С}{\left(\cos(t)\right)^{3}}
Dividing by \left(\cos(t)\right)^{3} undoes the multiplication by \left(\cos(t)\right)^{3}.
a=\frac{x^{2}+2С}{2\left(\cos(t)\right)^{3}}
Divide \frac{x^{2}}{2}+С by \left(\cos(t)\right)^{3}.