Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Share

\frac{\int \sin(y)\mathrm{d}y}{e^{x}}
Factor out the constant using \int af\left(y\right)\mathrm{d}y=a\int f\left(y\right)\mathrm{d}y.
-\frac{\cos(y)}{e^{x}}
Use \int \sin(x)\mathrm{d}x=-\cos(x) from the table of common integrals to obtain the result.
-\frac{\cos(y)}{e^{x}}+С
If F\left(y\right) is an antiderivative of f\left(y\right), then the set of all antiderivatives of f\left(y\right) is given by F\left(y\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.