Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int _{x}^{7}3x+\frac{5}{2}t^{2}-8\mathrm{d}t
Divide 16 by 2 to get 8.
\int 3x+\frac{5t^{2}}{2}-8\mathrm{d}t
Evaluate the indefinite integral first.
\int 3x\mathrm{d}t+\int \frac{5t^{2}}{2}\mathrm{d}t+\int -8\mathrm{d}t
Integrate the sum term by term.
3\int x\mathrm{d}t+\frac{5\int t^{2}\mathrm{d}t}{2}+\int -8\mathrm{d}t
Factor out the constant in each of the terms.
3xt+\frac{5\int t^{2}\mathrm{d}t}{2}+\int -8\mathrm{d}t
Find the integral of x using the table of common integrals rule \int a\mathrm{d}t=at.
3xt+\frac{5t^{3}}{6}+\int -8\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply \frac{5}{2} times \frac{t^{3}}{3}.
3xt+\frac{5t^{3}}{6}-8t
Find the integral of -8 using the table of common integrals rule \int a\mathrm{d}t=at.
3x\times 7+\frac{5}{6}\times 7^{3}-8\times 7-\left(3xx+\frac{5}{6}x^{3}-8x\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{\left(-7+x\right)\left(197+53x+5x^{2}\right)}{6}
Simplify.