Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int 3t+1\mathrm{d}t
Evaluate the indefinite integral first.
\int 3t\mathrm{d}t+\int 1\mathrm{d}t
Integrate the sum term by term.
3\int t\mathrm{d}t+\int 1\mathrm{d}t
Factor out the constant in each of the terms.
\frac{3t^{2}}{2}+\int 1\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 3 times \frac{t^{2}}{2}.
\frac{3t^{2}}{2}+t
Find the integral of 1 using the table of common integrals rule \int a\mathrm{d}t=at.
\frac{3}{2}x^{2}+x-\left(\frac{3}{2}\left(e^{x}\right)^{2}+e^{x}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{3x^{2}}{2}+x-\frac{3e^{2x}}{2}-e^{x}
Simplify.