Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. f
Tick mark Image

Similar Problems from Web Search

Share

\int \left(fx\right)^{2}\mathrm{d}x
Evaluate the indefinite integral first.
f^{2}\int x^{2}\mathrm{d}x
Factor out the constant using \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
f^{2}\times \frac{x^{3}}{3}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{f^{2}x^{3}}{3}
Simplify.
\frac{1}{3}f^{2}a^{3}-\frac{1}{3}f^{2}b^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{f^{2}a^{3}-f^{2}b^{3}}{3}
Simplify.