Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\int _{a}^{x}S^{2}s\mathrm{d}s
Apply rule a^{\log_{a}\left(b\right)}=b, where a=e and b=s.
\int S^{2}s\mathrm{d}s
Evaluate the indefinite integral first.
S^{2}\int s\mathrm{d}s
Factor out the constant using \int af\left(s\right)\mathrm{d}s=a\int f\left(s\right)\mathrm{d}s.
S^{2}\times \frac{s^{2}}{2}
Since \int s^{k}\mathrm{d}s=\frac{s^{k+1}}{k+1} for k\neq -1, replace \int s\mathrm{d}s with \frac{s^{2}}{2}.
\frac{S^{2}s^{2}}{2}
Simplify.
\frac{1}{2}S^{2}x^{2}-\frac{1}{2}S^{2}a^{2}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{\left(x-a\right)\left(x+a\right)S^{2}}{2}
Simplify.