Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Share

\int _{a}^{\frac{1}{2}}x^{2}-x\mathrm{d}x
Use the distributive property to multiply x-1 by x.
\int x^{2}-x\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int -x\mathrm{d}x
Integrate the sum term by term.
\int x^{2}\mathrm{d}x-\int x\mathrm{d}x
Factor out the constant in each of the terms.
\frac{x^{3}}{3}-\int x\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply -1 times \frac{x^{2}}{2}.
\frac{\left(\frac{1}{2}\right)^{3}}{3}-\frac{\left(\frac{1}{2}\right)^{2}}{2}-\left(\frac{a^{3}}{3}-\frac{a^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
-\frac{1}{12}-\frac{a^{3}}{3}+\frac{a^{2}}{2}
Simplify.