Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4x^{3}-2\sqrt[3]{x}+\frac{8}{x^{3}}\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{3}\mathrm{d}x+\int -2\sqrt[3]{x}\mathrm{d}x+\int \frac{8}{x^{3}}\mathrm{d}x
Integrate the sum term by term.
4\int x^{3}\mathrm{d}x-2\int \sqrt[3]{x}\mathrm{d}x+8\int \frac{1}{x^{3}}\mathrm{d}x
Factor out the constant in each of the terms.
x^{4}-2\int \sqrt[3]{x}\mathrm{d}x+8\int \frac{1}{x^{3}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 4 times \frac{x^{4}}{4}.
x^{4}-\frac{3x^{\frac{4}{3}}}{2}+8\int \frac{1}{x^{3}}\mathrm{d}x
Rewrite \sqrt[3]{x} as x^{\frac{1}{3}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{3}}\mathrm{d}x with \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Simplify. Multiply -2 times \frac{3x^{\frac{4}{3}}}{4}.
x^{4}-\frac{3x^{\frac{4}{3}}}{2}-\frac{4}{x^{2}}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{3}}\mathrm{d}x with -\frac{1}{2x^{2}}. Multiply 8 times -\frac{1}{2x^{2}}.
7^{4}-\frac{3}{2}\times 7^{\frac{4}{3}}-4\times 7^{-2}-\left(5^{4}-\frac{3}{2}\times 5^{\frac{4}{3}}-4\times 5^{-2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{2175696}{1225}-\frac{21\sqrt[3]{7}}{2}+\frac{15\sqrt[3]{5}}{2}
Simplify.