Evaluate
\frac{15\sqrt[3]{5}}{2}-\frac{21\sqrt[3]{7}}{2}+\frac{2175696}{1225}\approx 1768.817409528
Share
Copied to clipboard
\int 4x^{3}-2\sqrt[3]{x}+\frac{8}{x^{3}}\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{3}\mathrm{d}x+\int -2\sqrt[3]{x}\mathrm{d}x+\int \frac{8}{x^{3}}\mathrm{d}x
Integrate the sum term by term.
4\int x^{3}\mathrm{d}x-2\int \sqrt[3]{x}\mathrm{d}x+8\int \frac{1}{x^{3}}\mathrm{d}x
Factor out the constant in each of the terms.
x^{4}-2\int \sqrt[3]{x}\mathrm{d}x+8\int \frac{1}{x^{3}}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 4 times \frac{x^{4}}{4}.
x^{4}-\frac{3x^{\frac{4}{3}}}{2}+8\int \frac{1}{x^{3}}\mathrm{d}x
Rewrite \sqrt[3]{x} as x^{\frac{1}{3}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{3}}\mathrm{d}x with \frac{x^{\frac{4}{3}}}{\frac{4}{3}}. Simplify. Multiply -2 times \frac{3x^{\frac{4}{3}}}{4}.
x^{4}-\frac{3x^{\frac{4}{3}}}{2}-\frac{4}{x^{2}}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int \frac{1}{x^{3}}\mathrm{d}x with -\frac{1}{2x^{2}}. Multiply 8 times -\frac{1}{2x^{2}}.
7^{4}-\frac{3}{2}\times 7^{\frac{4}{3}}-4\times 7^{-2}-\left(5^{4}-\frac{3}{2}\times 5^{\frac{4}{3}}-4\times 5^{-2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{2175696}{1225}-\frac{21\sqrt[3]{7}}{2}+\frac{15\sqrt[3]{5}}{2}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}