Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{5}^{6}\frac{\left(x+5\right)^{2}}{x+5}\mathrm{d}x
Factor the expressions that are not already factored in \frac{x^{2}+10x+25}{x+5}.
\int _{5}^{6}x+5\mathrm{d}x
Cancel out x+5 in both numerator and denominator.
\int x+5\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int 5\mathrm{d}x
Integrate the sum term by term.
\frac{x^{2}}{2}+\int 5\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+5x
Find the integral of 5 using the table of common integrals rule \int a\mathrm{d}x=ax.
5\times 6+\frac{6^{2}}{2}-\left(5\times 5+\frac{5^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{21}{2}
Simplify.