Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int x^{2}+\frac{1}{x}+x^{4}\mathrm{d}x
Evaluate the indefinite integral first.
\int x^{2}\mathrm{d}x+\int \frac{1}{x}\mathrm{d}x+\int x^{4}\mathrm{d}x
Integrate the sum term by term.
\frac{x^{3}}{3}+\int \frac{1}{x}\mathrm{d}x+\int x^{4}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}.
\frac{x^{3}}{3}+\ln(|x|)+\int x^{4}\mathrm{d}x
Use \int \frac{1}{x}\mathrm{d}x=\ln(|x|) from the table of common integrals to obtain the result.
\frac{x^{3}}{3}+\ln(|x|)+\frac{x^{5}}{5}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{4}\mathrm{d}x with \frac{x^{5}}{5}.
\frac{100^{3}}{3}+\ln(|100|)+\frac{100^{5}}{5}-\left(\frac{5^{3}}{3}+\ln(|5|)+\frac{5^{5}}{5}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{6000998000}{3}+\ln(20)
Simplify.