Evaluate
\frac{271}{6}\approx 45.166666667
Share
Copied to clipboard
\int _{4}^{9}\left(\sqrt{x}\right)^{2}+\sqrt{x}\mathrm{d}x
Use the distributive property to multiply \sqrt{x}+1 by \sqrt{x}.
\int _{4}^{9}x+\sqrt{x}\mathrm{d}x
Calculate \sqrt{x} to the power of 2 and get x.
\int x+\sqrt{x}\mathrm{d}x
Evaluate the indefinite integral first.
\int x\mathrm{d}x+\int \sqrt{x}\mathrm{d}x
Integrate the sum term by term.
\frac{x^{2}}{2}+\int \sqrt{x}\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{2x^{\frac{3}{2}}}{3}
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{9^{2}}{2}+\frac{2}{3}\times 9^{\frac{3}{2}}-\left(\frac{4^{2}}{2}+\frac{2}{3}\times 4^{\frac{3}{2}}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{271}{6}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}