Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{4}^{9}\sqrt{x}+\left(\sqrt{x}\right)^{2}\mathrm{d}x
Use the distributive property to multiply \sqrt{x} by 1+\sqrt{x}.
\int _{4}^{9}\sqrt{x}+x\mathrm{d}x
Calculate \sqrt{x} to the power of 2 and get x.
\int \sqrt{x}+x\mathrm{d}x
Evaluate the indefinite integral first.
\int \sqrt{x}\mathrm{d}x+\int x\mathrm{d}x
Integrate the sum term by term.
\frac{2x^{\frac{3}{2}}}{3}+\int x\mathrm{d}x
Rewrite \sqrt{x} as x^{\frac{1}{2}}. Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{\frac{1}{2}}\mathrm{d}x with \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplify.
\frac{2x^{\frac{3}{2}}}{3}+\frac{x^{2}}{2}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}.
\frac{2}{3}\times 9^{\frac{3}{2}}+\frac{9^{2}}{2}-\left(\frac{2}{3}\times 4^{\frac{3}{2}}+\frac{4^{2}}{2}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{271}{6}
Simplify.