Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{300}^{400}26+33\times \frac{1}{100}x-3\times 1\times 10^{-5}x^{2}\mathrm{d}x
Calculate 10 to the power of -2 and get \frac{1}{100}.
\int _{300}^{400}26+\frac{33}{100}x-3\times 1\times 10^{-5}x^{2}\mathrm{d}x
Multiply 33 and \frac{1}{100} to get \frac{33}{100}.
\int _{300}^{400}26+\frac{33}{100}x-3\times 10^{-5}x^{2}\mathrm{d}x
Multiply 3 and 1 to get 3.
\int _{300}^{400}26+\frac{33}{100}x-3\times \frac{1}{100000}x^{2}\mathrm{d}x
Calculate 10 to the power of -5 and get \frac{1}{100000}.
\int _{300}^{400}26+\frac{33}{100}x-\frac{3}{100000}x^{2}\mathrm{d}x
Multiply 3 and \frac{1}{100000} to get \frac{3}{100000}.
\int 26+\frac{33x}{100}-\frac{3x^{2}}{100000}\mathrm{d}x
Evaluate the indefinite integral first.
\int 26\mathrm{d}x+\int \frac{33x}{100}\mathrm{d}x+\int -\frac{3x^{2}}{100000}\mathrm{d}x
Integrate the sum term by term.
\int 26\mathrm{d}x+\frac{33\int x\mathrm{d}x}{100}-\frac{3\int x^{2}\mathrm{d}x}{100000}
Factor out the constant in each of the terms.
26x+\frac{33\int x\mathrm{d}x}{100}-\frac{3\int x^{2}\mathrm{d}x}{100000}
Find the integral of 26 using the table of common integrals rule \int a\mathrm{d}x=ax.
26x+\frac{33x^{2}}{200}-\frac{3\int x^{2}\mathrm{d}x}{100000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply \frac{33}{100} times \frac{x^{2}}{2}.
26x+\frac{33x^{2}}{200}-\frac{x^{3}}{100000}
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -\frac{3}{100000} times \frac{x^{3}}{3}.
26\times 400+\frac{33}{200}\times 400^{2}-\frac{400^{3}}{100000}-\left(26\times 300+\frac{33}{200}\times 300^{2}-\frac{300^{3}}{100000}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
13780
Simplify.