Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 4x^{3}-6x^{2}+5x+3\mathrm{d}x
Evaluate the indefinite integral first.
\int 4x^{3}\mathrm{d}x+\int -6x^{2}\mathrm{d}x+\int 5x\mathrm{d}x+\int 3\mathrm{d}x
Integrate the sum term by term.
4\int x^{3}\mathrm{d}x-6\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x+\int 3\mathrm{d}x
Factor out the constant in each of the terms.
x^{4}-6\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{3}\mathrm{d}x with \frac{x^{4}}{4}. Multiply 4 times \frac{x^{4}}{4}.
x^{4}-2x^{3}+5\int x\mathrm{d}x+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x^{2}\mathrm{d}x with \frac{x^{3}}{3}. Multiply -6 times \frac{x^{3}}{3}.
x^{4}-2x^{3}+\frac{5x^{2}}{2}+\int 3\mathrm{d}x
Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 5 times \frac{x^{2}}{2}.
x^{4}-2x^{3}+\frac{5x^{2}}{2}+3x
Find the integral of 3 using the table of common integrals rule \int a\mathrm{d}x=ax.
5^{4}-2\times 5^{3}+\frac{5}{2}\times 5^{2}+3\times 5-\left(3^{4}-2\times 3^{3}+\frac{5}{2}\times 3^{2}+3\times 3\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
394
Simplify.