Evaluate
12\pi \approx 37.699111843
Share
Copied to clipboard
\int _{3}^{5}\frac{3\times 2}{y}\pi y\mathrm{d}y
Express \frac{3}{y}\times 2 as a single fraction.
\int _{3}^{5}\frac{3\times 2\pi }{y}y\mathrm{d}y
Express \frac{3\times 2}{y}\pi as a single fraction.
\int _{3}^{5}3\times 2\pi \mathrm{d}y
Cancel out y and y.
\int _{3}^{5}6\pi \mathrm{d}y
Multiply 3 and 2 to get 6.
\int 6\pi \mathrm{d}y
Evaluate the indefinite integral first.
6\pi y
Find the integral of 6\pi using the table of common integrals rule \int a\mathrm{d}y=ay.
6\pi \times 5-6\pi \times 3
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
12\pi
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}