Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int _{3}^{4}3\times 4^{2}t^{2}\mathrm{d}t
Expand \left(4t\right)^{2}.
\int _{3}^{4}3\times 16t^{2}\mathrm{d}t
Calculate 4 to the power of 2 and get 16.
\int _{3}^{4}48t^{2}\mathrm{d}t
Multiply 3 and 16 to get 48.
\int 48t^{2}\mathrm{d}t
Evaluate the indefinite integral first.
48\int t^{2}\mathrm{d}t
Factor out the constant using \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
16t^{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply 48 times \frac{t^{3}}{3}.
16\times 4^{3}-16\times 3^{3}
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
592
Simplify.